PubMed

Format: Abstract

v

Full text links

Eur J Nutr. 2018 Feb 21. doi: 10.1007/s00394-018-1638-9. [Epub ahead of print]

Modulation by hydroxytyrosol of oxidative stress and antitumor activities of paclitaxel in breast cancer.

El-Azem N¹, Pulido-Moran M^{1,2}, Ramirez-Tortosa CL³, Quiles JL^{1,4}, Cara FE⁵, Sanchez-Rovira P⁶, Granados-Principal S^{1,7}, Ramirez-Tortosa M^{8,9}.

Author information

Abstract

PURPOSE: The main objective of this study was to test the therapeutic potential of **hydroxytyrosol** and its combination with paclitaxel in breast **cancer** on oxidative stress status.

METHODS: Impact on proliferation rates of different chemotherapy administration patterns was assayed in MCF-7 and MDA-MB-231 breast **cancer** cell lines. Breast tumor-bearing rats were randomly assigned to Control, **Hydroxytyrosol**, Paclitaxel and Paclitaxel plus **hydroxytyrosol** groups, for 6 weeks. Tumor volume, cell proliferation and several systemic oxidative stress parameters were measured. Anti-proliferative activity in vitro experiments was correlated with in vivo experiments.

RESULTS: Combination group did significantly reduce tumor volume when compared with paclitaxel alone. Additionally, the combination improved the antioxidant status without compromising the antitumor activity of standard chemotherapy.

CONCLUSION: These findings reveal for the first time that **hydroxytyrosol** is an active partner in combined therapies with paclitaxel against breast **cancer**. Combination with **hydroxytyrosol** would also ensure a less oxidative impact of chemotherapeutic drugs that could potentially improve patient wellness.

KEYWORDS: Breast **cancer**; Cell proliferation; **Hydroxytyrosol**; Multimodal treatment and paclitaxel; Oxidative stress

PMID: 29468462 DOI: 10.1007/s00394-018-1638-9

LinkOut - more resources